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Abstract

Background: As public awareness of consequences of environmental exposures has grown, estimating the adverse
health effects due to simultaneous exposure to multiple pollutants is an important topic to explore. The challenges
of evaluating the health impacts of environmental factors in a multipollutant model include, but are not limited to:
identification of the most critical components of the pollutant mixture, examination of potential interaction effects,
and attribution of health effects to individual pollutants in the presence of multicollinearity.

Methods: In this paper, we reviewed five methods available in the statistical literature that are potentially helpful
for constructing multipollutant models. We conducted a simulation study and presented two data examples to
assess the performance of these methods on feature selection, effect estimation and interaction identification using
both cross-sectional and time-series designs. We also proposed and evaluated a two-step strategy employing an
initial screening by a tree-based method followed by further dimension reduction/variable selection by the
aforementioned five approaches at the second step.

Results: Among the five methods, least absolute shrinkage and selection operator regression performs well in
general for identifying important exposures, but will yield biased estimates and slightly larger model dimension
given many correlated candidate exposures and modest sample size. Bayesian model averaging, and supervised
principal component analysis are also useful in variable selection when there is a moderately strong exposure-
response association. Substantial improvements on reducing model dimension and identifying important variables
have been observed for all the five statistical methods using the two-step modeling strategy when the number of
candidate variables is large.

Conclusions: There is no uniform dominance of one method across all simulation scenarios and all criteria. The
performances differ according to the nature of the response variable, the sample size, the number of pollutants
involved, and the strength of exposure-response association/interaction. However, the two-step modeling strategy
proposed here is potentially applicable under a multipollutant framework with many covariates by taking
advantage of both the screening feature of an initial tree-based method and dimension reduction/variable
selection property of the subsequent method. The choice of the method should also depend on the goal of the
study: risk prediction, effect estimation or screening for important predictors and their interactions.

Keywords: Bayesian model averaging, Classification and regression tree, Collinearity, Interaction effect, Model selection,
Multiple pollutants, Principal component analysis, Shrinkage, Variable selection
* Correspondence: zcs@umich.edu
1Department of Biostatistics, University of Michigan School of Public Health,
Ann Arbor, MI, USA
Full list of author information is available at the end of the article

© 2013 Sun et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:zcs@umich.edu
http://creativecommons.org/licenses/by/2.0


Sun et al. Environmental Health 2013, 12:85 Page 2 of 19
http://www.ehjournal.net/content/12/1/85
Background
As public awareness of consequences of environmental
exposures has grown, estimating the adverse health ef-
fects due to simultaneous exposure to multiple pollu-
tants is currently an important topic to explore [1]. It
can provide insight into understanding the biological
mechanisms of pollutant toxicity and guide regulatory
standards for public health [2,3]. To date, numerous
studies have examined a wide range of health impacts
from exposure to ambient pollutants, with positive evi-
dences on elevated all-cause mortality [4,5], impaired
cardiac function [6], adverse cardiovascular events [7,8],
propensity for diabetes mellitus [9], raised incidence of
respiratory symptoms in children [10,11], reduced lung
function [12,13], preterm delivery and low birth weight
[14,15] and increased cancer risk [16,17].
In air pollution epidemiology, traditionally, health risks

were assessed by estimated effects of one or several
monitored pollutants using single-pollutant models. For
instance, fine particulate matter (PM2.5) has been one of the
most frequently studied pollutants [6,7,10,14,16,18-20].
Other criteria air pollutants such as carbon monoxide (CO),
sulfur dioxide (SO2), nitrogen dioxide (NO2) and ozone
(O3) also have been implicated in adverse effects on
health [14,18,19]. However, the reliability of using single
pollutant as the surrogate for air pollution is inadequate
because air pollution is a mixture of many different
gases, vapors and particles, with varying concentration
and composition depending on the geographic regions
and meteorological conditions [21]. To capture the com-
plex nature of environmental exposure as a whole, there
is a need to move from a single-pollutant to a multipollutant
approach, as recommended by the National Research
Council [1,21-24].
Some of the major challenges in evaluating the health

impacts of environmental exposures in a multipollutant
model are (1) to identify the specific components of pollu-
tion mixture that are most critical to the outcome of inter-
est, when a large number of exposures are observed; (2) to
examine the potential for interaction effects among pollu-
tants, given the evidence that the impact of combined ex-
posures may differ from the sum of the impacts from
single-pollutant models [25]; and (3) to efficiently attribute
health effects to individual pollutants in the presence of
multicollinearity. Pollutants are often correlated due to
the temporal and spatial pattern of emissions, and the
strong influence of common meteorology. The various
common constituents of the atmosphere and their che-
mical reactions across a region can induce this temporal
and spatial correlation [26]. Additionally, multipollutant
models place higher demands on the completeness and
quality of the necessary exposure data, which has been a
longstanding issue in environmental epidemiology [21].
While very important, the issue of exposure assessment
and areal integration/imputation of possibly misaligned
exposure data is beyond the scope of our coverage in the
present paper.
Often, surrogates or proxy summary measures of the

total environmental exposure burden have been used to
explore the deleterious effects of pollution mixture. A sim-
ple way is to represent each emission source by a single
pollutant, for instance, NO2 or CO for vehicular traffic,
PM10 for traffic and other combustion sources, and SO2

as an indicator of power plant emissions. A second ap-
proach involves replacing ambient concentrations of pol-
lutants with an indicator variable for the emission source.
Factors such as living in close proximity to major roads or
around roads with certain traffic intensity have been used
to assess health risks [16]. A third strategy divides pollu-
tants into groups by physical-chemical characteristics or
biological reactivity. For example, the separation of fine
(PM2.5) and coarse particles (PM10-2.5) based on size distri-
bution has sharpened our understanding of where inhaled
size-specific particulate matters come to rest in human
body and how they lead to different biological symptoms
[6,12]. A fourth strategy uses source apportionment ana-
lysis or “receptor modeling”, a widely used technique that
distinguishes emission sources, especially for PM, by ap-
portionment using profiles and source impacts [27]. A few
epidemiological studies have used source apportionment
data as explanatory variables in their examinations of PM
health effects [28,29]. Lastly, composite metrics, such as
the Air Quality Index (AQI) proposed by the U.S. Envi-
ronmental Protection Agency (EPA), might be used to ex-
plore health impacts of air pollution. The AQI provides an
integrated value of air quality health impacts from five air
pollutants (O3, PM, CO, SO2, and NO2) regulated by the
Clean Air Act, and is categorized into six levels labeled as
“good”, “moderate”, “unhealthy for sensitive groups”,
“unhealthy”, “very unhealthy” and “hazardous”, each accom-
panied with difference health advices [30]. While the stra-
tegies above could be easily implemented, overly simplified
conversion to surrogate categories may lead to loss of infor-
mation, and the resulting estimates corresponding to sur-
rogates or proxies have distinct interpretations than the
ones corresponding to individual exposures. More im-
portantly, synergistic effects among pollutants become
not identifiable by substituting with the composite or
mixture measures.
To address potential synergistic effects among air pollu-

tants, multivariate models with main effects for each pollu-
tant and interaction effects for each pair of pollutants has
been suggested [1,21]. However, it is well known that the
statistical power for detecting a significant two-way inte-
raction is low unless there is a strong measurable in-
teraction or an adequately large sample size, and this
reduction in power is even greater for higher order inter-
actions. Consequently, it may not be feasible to detect all
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pairwise (and higher order) interactions given a large set of
pollutants. When a synergy among multiple pollutants is
suspected, tree-based regression methods such as classifi-
cation and regression tree (CART) can be used to explore
multiple potentially non-linear and hierarchical interac-
tions [31]. While CART is well suited for identifying im-
portant main effects and interactions, it does not lead to
quantitatively meaningful effect estimates. An alternative
to quantify health effects with complex interactions is the
deletion/substitution/addition (DSA) algorithm by Sinisi
and van der Laan [32]. This algorithm was proposed to ex-
plore interactions in high-dimensional genomic data, and
was later adapted to the environmental context to over-
come the issue of a large number of correlated predictors
[33]. One advantage of this algorithm is its flexibility of im-
posing customized constraints on model size, order of in-
teractions, and polynomial functions of exposures to be
included in the model. In addition, its model selection
process is more aggressive than other automated selections
as it does not enforce the restriction of nested structure on
the explored class of models. However, the DSA approach
has been criticized because its estimates are not consistent
if the ratio of sample size to the number of candidate pre-
dictors is small, and the associated confidence intervals
have poor statistical properties when substantial correl-
ation exists among predictors [34].
To identify risk factors that have the most explanatory

power in the presence of correlation, a natural route is to
apply some dimension reduction technique. Several stand-
ard methods, such as factor analysis or principal compo-
nent analysis (PCA), have been implemented to analyze
the effects of multiple pollutants [35-37]. PCA derives or-
thogonal components from the set of exposure variables
by making full use of the variability in the data by using
the eigenvalues and eigenvectors of the exposure correl-
ation matrix. A resultant “eigenexposure” can be used in
subsequent analysis. A danger in this analysis is that the
relationship between exposures and response variables is
not accounted for in the generation of the principal com-
ponents. A modified version of PCA, named supervised
principal component analysis (SPCA), may go beyond this
limit [38]. By a pre-screen of eliminating pollutants not as-
sociated with the outcome, SPCA returns effect estimates
with smaller bias than corresponding estimates from PCA.
However, after the pre-screen step, the limitation of not
accounting for the multivariate exposure-response associ-
ations in PCA still applies to SPCA, and it may suffer from
model misspecification. Partial least-squares regression
(PLSR) is another extension of PCA, in which an optimum
subset of predictors is found that is also relevant for
response-predictor relationships [39-41]. Despite its popu-
larity in engineering and machine learning community,
PLSR has been seldom used in environmental health stud-
ies. One disadvantage of all PCA-based techniques is that
since each principal component is a linear combination of
multiple pollutants, estimated coefficients do not have dir-
ect quantitative interpretation.
While PCA offers dimension reduction in con-

structing summary exposure features, shrinkage-based
regression, e.g., least absolute shrinkage and selection
operator (LASSO) or ridge regression, may be helpful in
dealing with large dimensional models through variable se-
lection [42]. Due to the nature of the linear constraint,
LASSO regression differs from ridge regression in that
exact shrinkage of coefficients to zero is feasible, and hence
it incorporates variable selection [43]. Unfortunately,
shrinkage-based methods are unable to provide unbiased ef-
fect estimates, and some of them (i.e., ridge regression) do
not perform variable selection.
A further statistical difficulty involves incorporating

model uncertainty in the effect estimates. Given a long list
of explanatory variables, the usual practice is to present re-
sults from a single model selected from a series of hypoth-
esis testing procedures while ignoring other plausible
models. Skepticism regarding this philosophy that a single
model can serve as a representative of “the true model” in
a given dataset with moderate sample sizes prevails [44].
To address this problem of selecting “the” model, Bayesian
model averaging (BMA) averages the effect estimates
across all possible models weighted by the model posterior
probabilities [45,46]. However, there are differences in
opinion associated with the interpretation of effect esti-
mates from BMA in the presence of extensive collinearity
or under a large model space [46].
From the above discussion it is clear that the choice of

the method has to be guided by the goal of the study:
screening for associations, effect estimation or risk predic-
tion; it also has to be governed by the size of the dataset as
well as the dimensionality of the potential set of predictors.
There is a paucity of literature reviewing the operating
characteristics of existing statistical models and comparing
their strengths and weaknesses in a multipollutant context.
Billionnet et al. recently presented an excellent review of
statistical methods used or potentially applicable to this
problem [47]. However, no quantified assessment of the
relative performances of different methods or numerical
results from simulation studies was provided in that re-
view. In this paper, we conduct an extensive simulation
study for continuous outcomes from a cross-sectional
study as well as disease counts from a time-series study,
and present two data examples to assess the performances
of the five statistical methods: DSA, SPCA, LASSO, PLSR
and BMA. In addition, a two-step modeling strategy em-
ploying an initial screening by CART in combination with
each of the aforementioned five methods is evaluated when
there is a long list of candidate pollutants plus interactions
to consider. We examine the performance of each ap-
proach with a focus on feature selection, effect estimation
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and detection of main effects and interactions. Other aspects
such as efficiency of the estimates, stability of the results,
flexibility of implementation and difficulty in interpretation
are discussed as well. This comprehensive comparison will
be helpful for making informed decisions on which ana-
lytic approach to choose with different data structures and
study designs. We also provide annotated R-codes for im-
plementation of all the methods that may serve as a useful
resource to the practitioner (see Additional file 1).

Methods
Statistical methods
In this section, we describe how each method is imple-
mented and what are the advantages and disadvantages of
using each one. All statistical analyses can be conducted
using R software (version 2.13.0), and packages corre-
sponding to different methods will be introduced.

Notations
Let us consider a regression problem with a continuous
response Y and potential predictors X (different pollut-
ants or source components in a single pollutant in the
context of a multipollutant study):

Y ¼ β0 þ
XP
p¼1

βpZp þ ε; and

Zp ¼ X1;…;XK ;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
K terms

X1X2;…;XK−1XK|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
K
2ð Þ terms

; say;

ð1Þ
where β0 refers to the intercept, βp is the coefficient for
predictor Zp (can be zero in the true model), the random
error variable ε follows a standard normal distribution,
X is a set of candidate pollutants with size K, and Z is
the entire set of potential predictors: for this paper we
consider all the main effect terms and pairwise interac-
tions among candidate pollutants in X, hence the dimen-
sion of Z is P ¼ K þ K

2

� �
.

Classification and regression tree (CART)
The algorithm of CART involves recursively partitioning
observations until reduction in the variability of the out-
come is maximized [48]. The construction of a decision
tree involves three steps [31,43]: (1) Recursive data
partitioning: at each partitioning step, the algorithm ex-
amines all split points on every explanatory variable in
X, and chooses the best pair of split points and splitting
variable in terms of the minimum sum of squared devia-
tions from the mean responses in the resultant two sub-
groups. This partitioning is repeated on each of the new
subgroups. In this process, no assumption of linear rela-
tionship has been assumed, so complex interactions and
non-linear effects may be captured. (2) Construction of
the preliminary tree: in order to capture the important
structure of the data, a large preliminary tree is preferred
and the binary splitting is stopped when a minimum
node size is reached or when further split does not im-
prove the overall fit significantly. (3) Pruning the deci-
sion tree: to overcome the problem of overfitting, the
preliminary tree is pruned by its predictive ability, for
example, minimizing the ten-fold cross-validated error.
This recursive partitioning of the regression trees can be
implemented by rpart package [48].
Unlike traditional regression models, a tree-based me-

thod has several attractive properties: it is less sensitive
to outliers, it requires no distributional assumption or
data transformation, it is adaptable to complicated inter-
actions among a large pool of predictors, the results are
visually intuitive, and the prediction rule is easy to follow
[38,41]. However, its application is restricted by the fact
that quantified risk and effect estimates corresponding
to the predictors cannot be obtained directly.
Deletion/Substitution/Addition (DSA)
As a novel model selection approach, the implementation
of DSA algorithm can be divided into three steps [32,49]:
(1) Construct the whole model space as linear combina-
tions of basis functions under user-specified constraints,
where the choices of basis functions of candidate
predictors are determined by the maximum order of inter-
actions and maximum sum of powers (e.g. terms of the

nature Xi
1X

j
2, with a constraint on i+j), and the model size

also has a specified maximal value. (2) Starting from an
intercept model, the DSA algorithm searches the model
space by making deletion, substitution and addition moves
repeatedly until the model size exceeds the specified max-
imum value. Given the current best model of size p=3, say
(e.g., X1 +X2 +X1X2), a deletion move produces a deletion
set of models with size p-1 by deleting an existing term
from the current model (e.g., X1 +X2), finds a model with
the minimum objective function within this deletion set,
and updates the best model of size p-1 if this minimum is
less than previously saved minimum of size p-1. The ob-
jective function chosen depends on the type of response
considered and corresponds to sum of squared residuals
in linear regression. The substitution and addition moves
are performed similarly, with the substitution set
containing models of the same size p where an existing
term is replaced by a new term (e.g., X1 + X2 + X1X3) and
the addition set containing models of size p+1 by adding a
new term to the current model (e.g., X1 + X2 + X3 +
X1X2). (3) After the optimal model for each model size is
identified, the final model with its corresponding predictors
is selected based on cross-validation. This flexible model
selection approach can be implemented by modelUtils and
DSA package jointly [50].
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Considering its original motivation of detecting tran-
scription factor binding sites for the analysis of genomic
data, the DSA algorithm was developed to enable an ex-
haustive search over the entire covariate space, which
includes complex interactions and nonlinear terms of
predictors, a feature that is likely to be useful in mul-
tipollutant studies. Another attraction of this algorithm
is the adoption of the deletion, substitution and addition
moves. Unlike automatic model selection such as back-
ward or stepwise procedures which depend on tests for
nested models, DSA allows for the flexibility of deleting,
replacing or adding terms at each move, thus forcing the
search to be more exhaustive. Additionally, the use of
cross-validation in the algorithm ensures the selected
model being less sensitive to outliers and has good pre-
dictive ability [33].

Supervised principal component analysis (SPCA)
Acknowledging that conventional PCA only maximizes
the variance explained by linear combinations of the pre-
dictor variables, SPCA was proposed to take into account
the relationship between predictors and response variables
in the dimension reduction process [51]. The benefit of
SPCA as a feature selection tool becomes apparent when
the covariate space grows, especially under extreme condi-
tions where the number of covariates exceeds the number
of observations, the well-known P>N situation.
Roberts and Martin further refined the SPCA method to

make it suitable for multipollutant time-series studies [38].
For describing the method, we assume the regression
dataset comes from a cross-sectional study with continu-
ous responses as described in Equation 1. The implemen-
tation of SPCA can be achieved as follows: (1) Sort Wald’s
statistics from univariate models for all individual and
interaction terms in a descending order. (2) Choose a re-
duced matrix Z’ selecting S covariates with absolute values
of Wald’s statistics larger than a threshold ζ, where the op-
timal choice of ζ is determined by minimizing the predic-
tion error of the corresponding multivariate model via
10-fold cross-validation. (3) Compute the first q (q<S)
principal components of the reduced matrix Z’. Typically
the first few principal components capture most of the
variability in the covariate space, and in some cases it may
be enough to use only the first principal component. (4)
Refit the multipollutant model based on the linear combi-
nations of S predictors retained in the reduced matrix Z’.
As a result, the fitted model for SPCA can be explicitly
expressed as:

EY ¼
Xq
i¼1

biQi ¼
Xq
i¼1

bi
XS
s¼1

αisZ
0
s ð2Þ

where Qi denotes the i-th principal component from the
reduced matrix Z’, bi is the specified effect of the i-th
principal component, and αis is the loading factor of the
s-th predictor in matrix Z’ for the i-th principal compo-
nent. The superpc package provides SPCA analysis with
continuous outcome [52]. Modified R codes as in Roberts
and Martin [38] were used for implementation of SPCA in
time-series studies with count data since no statistical
packages are readily available.
By excluding covariates not strongly related to the re-

sponse variables, SPCA reduces the bias of effect estimates
in comparison with conventional PCA [38]. However, there
are concerns on the loadings for predictors in the reduced
matrix since they are computed without consideration of
their multivariate associations with outcomes. Moreover,
the interpretation of estimated coefficients from SPCA is
difficult especially when more than one principal compo-
nents of the reduced matrix are included.

Least absolute shrinkage and selection operator (LASSO)
Shrinkage-based regression methods such as LASSO
were developed to address the problem of fitting a re-
gression model when the number of predictors is large
compared to the sample size. By imposing a penalty on
the size of the regression coefficients, they are expected
to perform a bias-variance trade-off with the price of
sacrificing unbiasedness of estimates for more precision
[53]. The LASSO estimates are defined by minimizing
the sum of squared errors with a bound on the sum of
the absolute values of the coefficient estimates [43]:

β̂LASSO ¼ argmi
β

n
XN
i¼1

Y i−β0−
XP
p¼1

βpZip

 !2

þ λ
XP
p¼1

βp

��� ���
( )

ð3Þ

where N denotes the sample size and λ is the tuning par-
ameter that controls the amount of shrinkage. Due to
the L1 penalty term, computation of the LASSO solu-
tions is a quadratic programming problem and there is
no closed form expression for estimates obtained from
LASSO [53]. An efficient algorithm for all possible
LASSO estimates using modified least angle regression
(LAR) was proposed by Efron et al. [43,54]. Briefly, least
angle regression iteratively builds models by including
the predictor with the highest correlation to the current
estimated residual. At each step, LASSO solutions are
computed for a grid of shrinkage parameters, starting
from zero to the least squares fit, and the optimal λ is
selected by the minimum cross-validated root mean
squared error. As a result, LASSO coefficient path for all
predictors is constructed. The lars package was devel-
oped to implement this algorithm. Many existing predic-
tion loss criteria, for example, the Mallows’ Cp statistic,
can be used for selecting the optimal dimension of the
LASSO model.
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Despite a small bias introduced in the coefficients,
LASSO regression has desirable analytical properties [55].
And by imposing a linear constraint, LASSO regression can
shrink coefficients to exactly zero, a feature similar to vari-
able selection that is not shared in ridge regression [56].
However, correct statistical inference following LASSO re-
mains a challenging problem.

Partial least-squares regression (PLSR)
PLSR is useful in constructing predictive models with
high-dimensional covariates. Compared to PCA, PLSR
often requires fewer components to achieve the same
prediction error as it captures information in the predic-
tors as well as the relationships between predictors and
response variables [39,41]. There are several PLSR algo-
rithms developed, among which a projection kernel
based algorithm is used as the default method in the pls
package in R and can be described through the following
steps [40]: (1) Compute the first eigenvector of kernel
matrices ZTYYTZ and YTZZTY, referred as weight vec-
tors l1 and h1, respectively, and normalize both vectors
so that ||Zl1|| = ||Yh1||= 1. (2) Project the matrix of co-
variates on its weights to get the z-scores f1 = Zl1. (3)
Calculate loadings for covariates by ordinary least square

(OLS) regression rT1 ¼ f T1 f 1
� �−1

f T1 Z ¼ f T1 Z ¼ lT1 Z
TZ . (4)

Deflate the matrix of covariates Z1 ¼ Z−f 1r
T
1 . (5) Repeat

steps 1–4 multiple times until all PLS components are
determined. Thus, the PLSR coefficients can be esti-

mated by β̂ ¼ L LTZTZL
� �−1

HT , where L and H denote
matrices with the weight vectors l1 and h1 as their col-
umns. The optimal number of components is chosen
empirically by plotting the cross-validated predictive re-
sidual error sum of squares (PRESS) as a function of
the number of components, and selecting the number of
components that yields the first local minimum in
PRESS statistic or by a pre-defined threshold on the se-
quential increments of the PRESS statistic.
A major limitation of the PLSR analysis is that as a

PCA-based method, it is not always optimal in screening
or removing predictors that have no association with the
response, since its components are computed as linear
combinations of all predictors. However, it still serves as
a powerful dimension reduction and noise removal tool
with the focus on prediction.

Bayesian model averaging (BMA)
As an effective approach to deal with model uncer-
tainty, BMA provides robust estimation of parameters
by model averaging. Suppose Δ is the parameter of
interest (coefficient corresponding to a particular pre-
dictor in Z, say), then its posterior distribution given all
observations (Y, Z) can be expressed as an average of
the posterior distributions of parameter Δ under each
of the models considered, weighted by their posterior
model probabilities [57,58]:

PðΔjY ;ZÞ ¼
XD
d¼1

P Δ Md;Y ;ZÞP Md Y ;ZÞjðjð ð4Þ

where M1,…, MD (D ≤ 2P) denote the models consid-
ered, and the posterior probability of model Md,
according to Bayes’ rule, is given by:

P MdjY ;Zð Þ ¼ P Y jMd;Zð ÞP Mdð ÞXD
i¼1

PðY jMi;ZÞP Mið Þ
ð5Þ

in which P(Md) denotes the prior probability of model
Md being the true model, and the marginal likelihood
of model Md can be computed by integrating the likeli-
hood function P(Y|θd,Md, Z) over the prior probability
of model-specific parameter vector θd ¼ βd; σ

2
d

� �
, say.

P Y Md;ZÞ ¼ ∫P Y θd;Md;ZÞP θd MdÞdθdjðjðjð ð6Þ
The precise expression for the posterior mean and

variance of Δ can be derived by employing the rule of
conditional expectation and the law of total variance, re-
spectively [59,60].
Estimation in BMA consists of three steps: (1) Choose

the prior probability for each model and prior density of pa-
rameters in each model. (2) Compute the marginal like-
lihood and posterior model probability for each model
considered. (3) Derive the weighted average posterior distri-
bution of the parameters of interest, and estimate its associ-
ated mean and variance. It should be noted that during the
implementation of BMA by bicreg function in the bma
package, enumeration of all models will be computationally
too expensive if the number of candidate predictors exceeds
30, and a preliminary model selection will be conducted by
default, before the model averaging [61-63].
Compared to conventional modeling methods which ig-

nore model uncertainty, BMA is attractive in that it does
not select for a single “best” model and it makes inferences
by averaging over a range of possible models. BMA-based
confidence intervals are well-calibrated by taking ac-
count of both sampling variation within models and
between-model uncertainty. One concern for the BMA
analysis is the potential for large variance of estimates pro-
duced in the presence of extensive multicollinearity [46,64].

Simulation studies
Health effects of environmental exposures have been ex-
amined widely in cross-sectional, time-series, cohort and
case–control studies. In general, cross-sectional studies
relate continuous (e.g. blood pressure, heart rate vari-
ability) or binary (e.g. acute asthma attacks) variables to
exposures at a single time point [33,65], while time-
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series analyses associate the number of events (e.g. deaths,
hospitalizations, or emergency visits) with changes in daily
ambient level of pollutants/exposures [10]. In order to
evaluate the performances of different model building/
dimension reduction strategies, exposure-response rela-
tionships were simulated in this paper under two settings:
continuous outcome from a cross-sectional study and
daily event counts from a time-series study. Binary out-
comes from a cross-sectional/cohort/case–control study
can be analyzed in a similar fashion as continuous out-
comes using a logit link function. Two hypothetical sets of
candidate pollutants with different sizes (K=4 and K=10 or
20) were used to assess the effectiveness of statistical
methods in terms of feature selection and estimation of re-
gression coefficients involved in the health risk models.
Therefore, a combination of four scenarios each with dif-
ferent subsets of nonzero main effects and interactions
was investigated under each strategy: Scenarios 1 and 2
examine continuous responses in a cross-sectional study
with 4 and 20 pollutants, respectively, and Scenarios 3 and
4 examine daily counts from a time-series study with 4
and 10 pollutants, respectively.

Simulation settings for cross-sectional studies
Lognormal distribution is an empirically justified density
for many pollutant concentration levels [66]. A multivari-
ate structure with pairwise correlations instead of mutual
independence allows for a better capture of multipollutant
properties. Under the cross-sectional design with four
pollutants, with X=(X1, X2, X3, X4) as a 4-pollutant ran-
dom vector, exposure variables were generated from a
multivariate lognormal distribution with the mean μ=E[X]=

(1.20, 2.30, 1.89, 1.00) and the covariance matrix Σ ¼ E

X−μð Þ X−μð ÞT
h i

¼ σ2ij

� �
, in which diagonal elements σ2ii =

1.00, i=1,…,4, and off-diagonal elements σ212 =0.52, σ213 =
0.35, σ214 =0.28, σ2

23 =0.57, σ2
24 =0.54, and σ234 =0.41. Here,

the choice of distribution parameters was based on ob-
served data on four common pollutants CO, NO2, PM2.5

and SO2 in the Detroit Asthma Morbidity, Air Quality and
Traffic (DAMAT) study, where each of the pollutants were
standardized to have a unit variance [10]. Similarly, in the
simulation Scenario 2, we use X to denote a 20-component
vector from a multivariate lognormal distribution with the
mean μ=E[X]=(μ1,…,μ20), μi=1.00, i=1,…,20, and the covari-

ance matrix Σ ¼ Σ1 05�15
015�5 Σ2

� 	
20�20

, where Σ1 ¼ σ2ij

� �
with σ2ii =1.00, σ

2
ij =0.20, i=1,…,5, j=1,…,5, i≠j; and Σ2 de-

notes an identity matrix I15*15.
A normal linear regression model was used to generate

the continuous outcome Y given X in the cross-sectional
study. We considered the true generation model to be
a standard multiple linear regression model including
main effects of a subset of pollutants and some pairwise
interactions, as follows:

Y ¼ β0 þ
XK
i¼1

βiXi þ
XK
i¼1

XK
j>i

γ ijXiXj þ ε ð7Þ

where ε was assumed to be independent and follow a nor-
mal distribution ε ~N(0, 32). Regression coefficients were
pre-specified: in simulation Scenario 1 (K=4), β0 =0.1, β2=
β3=0.5, βi=0, i=1,4, γ23=0.2, γij=0, (i, j)≠(2, 3); and in simu-
lation Scenario 2 (K=20), β0=0.1, β1=β2=β6=β7=0.5, βi=0,
i≠1, 2, 6 or 7, γ12=γ16 = γ67 =0.2, γij=0, (i, j)≠(1,2), (1,6) or
(6,7). This choice of the error distribution and regression
coefficients ensures that the ratio of the sum of squares
for regression to the total sum of squares R2 was fixed at
the level of 0.25. For each simulation scenario, we simu-
lated 1000 datasets of a moderate sample size 250. No
confounding factors were taken into account for the pur-
pose of simplicity.

Simulation settings for time-series studies
Under the time-series design with four pollutants, the
multivariate vector Xt (t=1,…,400) corresponding to daily
exposure measurements on a period of 400 days was
generated by an autoregressive model depending on pre-
vious 10 days. Specifically,

Xt ¼
x1t
x2t
x3t
x4t

0
BB@

1
CCA;Xt ¼ ci þ

X10
j¼1

ϕ1j 0 0 0
0 ϕ2j 0 0
0 0 ϕ3j 0
0 0 0 ϕ4j

0
BB@

1
CCA⋅Xt−j þMVN 0;Σð Þ

ð8Þ
where ci (i=1,…,4) denotes the constant vector controlling
for the seasonal effect of Xt, ϕkj is the partial autocorrel-
ation function (PACF) coefficient for the k-th pollutant at
lag day j, k=1,…,4 and j=1,…,10. Specification of seasonal
effects and PACF coefficients were estimated from data in
the DAMAT study [6] (see Additional file 2: Table S1).
Here, we used the same set of means and covariance
matrix corresponding to the four pollutants as in the
simulation Scenario 1.
In time-series studies, daily counts as an outcome would

be influenced by a number of factors, such as temporal
trend or meteorological variation [35]. To eliminate these
confounding factors, we adopted a method previously used
to generate realistic time-series count data [38,67,68]. First,
we fitted a Poisson regression with a log-linear link to the
actual DAMAT data.

log ωtð Þ ¼ β int þ βsSeasont þ βdDOWt þ βrhRHt

þβtempSpline Temptð Þ þ βtSpline tð Þ ð9Þ

In this model, ωt refers to the expected number of
asthma events on day t, the list of covariates includes
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season, day of the week (DOW), daily average relative hu-
midity (RH), smooth function Spline(.) of daily average
temperature (Temp) and day of the study (t). Next, the es-
timated counts of asthma events ω̂t were extracted and
added as an offset to a pre-specified exposure-response re-
lationship in a second Poisson regression:

log ψtð Þ ¼ log ω̂tð Þ þ
XK
i¼1

βiXit þ
XK
i¼1

XK
j>i

γijXitXjt

ð10Þ
where ψt refers to the time-varying mean counts (after re-
moving the effect of the confounding factors), main and
interaction effects of four pollutants were specified as
β1=β3=0.3, βi=0, i≠1 or 3, γ13=0.1, γij=0, (i, j)≠(1, 3). Time-
series asthma counts of length 400 days representing an
average number of 13.3 counts/day were then generated
from Poisson distributions with mean ψt.
Time-series counts for simulation Scenario 4 were gen-

erated in a similar fashion, but assuming a ten-pollutant
multivariate structure with mean μ=(μ1,…,μ10), μi=1.00,

i=1,…,10 and covariance matrix Σ ¼ Σ1 04�6
06�4 Σ2

� 	
10�10

,

where Σ1 ¼ σ2ij

� �
and σ2

ii =1.00, i=1,…,4, σ2
12 =0.60, σ2

13 =

0.40, σ214 =0.20, σ223 =0.50, σ
2
24 =0.20, σ234 =0.10 and Σ2 re-

fers to an identity matrix I6*6. Seasonal effects were the
same as in the four-pollutant framework, while PACF co-
efficients were obtained from the DAMAT data under an
autoregressive model on previous 5 days for reduced
complicity (see Additional file 2: Table S1). Parameters in
the second Poisson regression model were specified as
β1=β3=β6=β9= 0.2, βi=0, i≠1, 3, 6 or 9, γ13 = γ16 = 0.1,
γij=0, (i, j)≠(1, 3) or (1, 6). Considering the increased num-
ber of pollutants involved, daily counts were simulated for
800 days with an average rate of 14.7 events/day. Although
some time-series studies have assessed health effects of ex-
posure to multiple pollutants on longer time scales, rela-
tive performances of different statistical methods should
remain similar given the sample size we chose.

Data analysis examples
Cross-sectional design with quantitative outcome:
oxidative stress biomarkers and environmental
contaminant exposures in the national health and
nutrition examination survey study
In addition to the simulation study, we applied the above
methods to data from the National Health and Nutrition
Examination Survey (NHANES) collected between 2005
and 2008. NHANES is an ongoing cross-sectional study
designed to measure subject exposure to various environ-
mental chemicals, dietary intake patterns, and various
health outcomes [69]. Our previous studies indicated sev-
eral associations between urinary phthalate metabolites
and serum markers of oxidative stress in a large human
population [70,71]. As a follow-up, this analysis examines
the same association when phthalate exposure occurs in
conjunction with exposure to other environmental con-
taminants that may also be capable of causing an oxidative
stress response.
In this combined dataset, we included subjects aged 12

and up with complete data on all exposures, outcomes,
and covariates, containing age, ethnicity, and poverty in-
come ratio used in the sampling process, and gender, body
mass index, serum cotinine, and urinary creatinine consid-
ered to be correlated with the outcome, which resulted in
a final sample size of 3,773. The population distribution
by covariates is presented in Additional file 2: Table S2
and a total of 25 exposures are categorized into 4 groups.
The outcomes of interest were bilirubin and gamma-
glutamyl transferase (GGT) which are believed to be
systemic markers of oxidative stress. A conventional log-
transformation was applied to all the exposures and out-
comes. This study design corresponds to Scenario 2 in our
simulation: cross-sectional data with continuous outcome
and larger number of potential predictors. We did not in-
corporate the survey weights from NHANES in our ana-
lysis as many R packages for our methods of variable
selection do not allow for adjustment for survey design.
However, models were adjusted for some characteristics
used in the creation of the survey weights, including age,
ethnicity, and poverty income ratio.
The procedure to conduct our analysis can be summa-

rized into six steps: (1) We first regressed the outcome
(bilirubin or GGT) on the covariates listed above and used
the residuals from the regression model as the response
for model selection in the following steps. (2) We per-
formed correlation analysis to assess the presence of col-
linearity within each group of environmental exposures
(See Additional file 2: Table S3). When several exposures
in the same group were highly correlated (Pearson cor
relation coefficient > 0.60), only the one with the smallest
p-value in the single-exposure regression model was re-
tained (see Additional file 2: Table S4). (3) We applied
CART with the criteria of minimizing the cross-validated
error to the reduced subset of exposures after the correl-
ation analysis. Among a reduced number of 18 candidate
exposures from Step 2, seven were selected in the construc-
tion of the regression tree for the outcome bilirubin, and
eight were selected for the outcome GGT (See Additional
file 2: Figure S5). (4) We applied our methods to the
main effects and all pairwise interactions of individual
exposures selected by CART, including BMA, LASSO,
SPCA and DSA. (5) All predictors identified by different
methods were incorporated into a bigger omnibus linear
regression model, where the outcome was bilirubin or
GGT and all covariates were controlled for. (6) Eventually,
proposed models for bilirubin or GGT were constructed
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by eliminating non-significant predictors (p-value > 0.05)
from the omnibus models and exposure effects were esti-
mated using ordinary linear regression. Note that proper
inference and testing after model selection is an incredibly
challenging problem, and fitting standard models to yield
measures of significance post-model selection obviously
leads to inflated Type 1 error rates and overly optimistic
results. The results from the presented model should thus
be interpreted with this caveat in mind.

Time-series design with count data: asthma morbidly and
ambient air pollutants in the detroit asthma morbidity,
air quality and traffic study
We applied the proposed methods to the Detroit Asthma
Morbidity, Air Quality and Traffic (DAMAT) study. Li
et al. (2011) analyzed time-series count data from 2004–
2006 on asthma morbidity in the pediatric Medicaid popu-
lation of Detroit, Michigan. Concentrations of pollutants
PM2.5, CO, NO2 and SO2 were examined for potential as-
sociations. Statistically significant associations at 5-day lag
and 3- and 5-day moving averages of SO2 and PM2.5 con-
centrations were observed with asthma emergency depart-
ment visits and hospitalizations using single-pollutant
models [10]. We now extend our scope to multipollutant
models exploring potential interactions to address the
same research question.
Daily asthma events were identified from emergency

department visits and hospitalizations for the Detroit
Medicaid-insured population, and further restricted to
children 2–18 years of age due to the difficulty of asthma
diagnosis for children under 2. A total of 12,933 asthma
events were observed from 7,063 children during the
1,096 days, representing an average rate of 11.8 events per
day [10]. Daily measurements of CO, NO2, SO2 and
PM2.5, and meteorological data including temperature and
relative humidity, were also obtained for this study period.
Previous analyses suggested strong evidence of rise in daily
asthma events with increasing 3-day lag of concentrations
for SO2 and PM2.5, so this lag specification of air pollut-
ants was used as exposure variables. The mean 3-day lag
of air pollutants were 0.43 ppm for CO, 16.8 ppb for NO2,
3.78 ppb for SO2, and 15.0 μg/m3 for PM2.5. This study de-
sign corresponds to Scenario 3 in our simulation analyses:
time-series data with a count response and four air pollut-
ants measured at 3-day lags.
To control for the temporal pattern and weather ef-

fects in the time-series data, we applied the two-stage
generalized linear model (GLM) as described in the data
generation of Scenario 3 in the simulation. The esti-
mated daily counts from the first Poisson regression in
(12) were used as an offset in the second Poisson regres-
sion model in (13) where the X’s represent the four ex-
posures. Note that this two-step approach is adopted
only due to a logistical inconvenience that some of the
model selection tools available in existing statistical soft-
ware do not allow inclusion of a set of “forced variables”
in the model without performing variable selection on
this set of confounders. Ideally, one would work with a
single model that performs variable selection in the pres-
ence of confounders to be adjusted for.
The collection of main effects and pairwise interactions

identified to be associated with the outcome within each
method were incorporated into an omnibus GLM, with
confounding factors such as year, season, DOW, time, RH
and Temp adjusted and potential over-dispersion consid-
ered. Finally, a proposed model with non-significant ex-
posure variables eliminated was constructed.
Results
Simulation results
Under each simulation configuration, we generated 1000
datasets. For each examined study design, we present the
average of estimated effects with their empirical standard
errors for non-zero predictors, the percentage of models
correctly identifying the non-zero coefficients, and the
average model size over 1000 replicates for five different
statistical methods (BMA, DSA, LASSO, PLSR and SPCA).
We also considered additional measures, including false
positive rate (FPR), true positive rate (TPR), and mean
squared error (MSE) for the coefficients corresponding to
truly null and truly associated predictors, to help evaluate
the performances of competing statistical methods as
displayed in Additional file 2: Table S6.
For the ease of interpretation, the regression model in

SPCA was fit on the first principal component of the re-
duced matrix Z’, and accordingly the estimated effects of
predictors highly associated with the outcome can be
expressed as the products of estimated regression coeffi-
cient for the first principal component b1 and the load-
ing factors of predictors in the construction of first

principal component α1s (i.e. β̂s ¼ b1α1s if Zs ∈ Z '). In
BMA analysis, predictors were considered to be identi-
fied if their posterior probabilities exceeded 10%, where
the cut-off value was chosen in an ad-hoc manner. In
the presence of a long list of candidate pollutants, we
also assessed identification and estimation of non-zero
coefficients using a two-step modeling strategy, which
employs an initial screening by CART followed by fur-
ther dimension reduction/variable selection by the five
methods at the second step. This strategy was not used
in the time-series studies because existing package does
not apply CART to count data. The main findings of the
simulation study are summarized as follows.
Cross-sectional studies
Table 1 presents simulation results corresponding to the
five methods under simulation Scenario 1 (cross-sectional



Table 1 Simulation results comparing five statistical methods under Scenario 1

Predictor β Measure BMA1 DSA2 LASSO3 PLSR4 SPCA5

X2 0.50 Estimate (ESE) 0.22 (0.40) 0.76 (0.62) 0.40 (0.39) 0.04 (0.02) 0.08 (0.18)

Percent included 51.8% N/A 70.8% N/A 90.6%

X3 0.50 Estimate (ESE) 0.25 (0.44) 0.86 (0.59) 0.43 (0.43) 0.05 (0.03) 0.08 (0.18)

Percent included 53.0% N/A 67.9% N/A 90.6%

X2*X3 0.20 Estimate (ESE) 0.29 (0.11) 0.02 (0.11) 0.19 (0.14) 0.23 (0.11) 0.16 (0.11)

Percent included 96.0% 4.4% 83.2% N/A 82.5%

Average model size 3.2 4.5 3.7 10 7.1

Average estimated effects, empirical standard errors, percentage of correct identification of non-zero coefficients, and average model size corresponding to 5
statistical methods in a cross-sectional study with continuous responses and 4 candidate air pollutants. Sample size for each replicate was N=250. The true model
size was 3 without accounting for the intercept, and the possible maximum model size was 10. ESE, empirical standard error of the estimate. Results are based on
1000 replicates.
Estimate of the non-zero predictor is calculated as the mean of the products that estimated regression coefficient of this predictor multiplies the indicator
function that this predictor is correctly identified during each replication. The percentage of the non-zero predictor quantifies the proportion of correct
identification of this predictor over 1000 replicates in each method. 1In BMA, predictors with their posterior probabilities greater than 10% are regarded as
identified. 2In DSA, there is no variable selection for main effects as individual exposures are enforced when their interactions are of interest. Identification of
interaction refers to the inclusion of interaction term in the cross-validated best predictive model. 3Predictors with their estimated LASSO regression coefficients
not equal to zero are considered identified. 4No variable selection has been applied in PLSR because it uses all predictors. 5In SPCA, predictors are identified if
their Wald’s statistics from univariate models are larger than a threshold value.

Sun et al. Environmental Health 2013, 12:85 Page 10 of 19
http://www.ehjournal.net/content/12/1/85
design, K=4). Note that LASSO estimates of non-zero
coefficients are the least biased and most efficient,
with smallest MSE among all methods as displayed in
Additional file 2: Table S6. Point estimates of interaction
effects from PCA-based approaches such as SPCA and
PLSR stay close to the true parameters, whereas substan-
tial bias has been observed in their estimated main effects.
Main effects from DSA are overestimated, while in BMA
analysis the main effects are underestimated and inter-
action effect overestimated. These directions of upward or
downward bias are not consistent across simulation set-
tings. In PLSR, each component is constructed as a
weighted mean of all candidate predictors, so all predic-
tors are used in the regression model with its model size
equal to the maximum model size. LASSO regression,
SPCA and BMA have high interaction detection rates as
assessed by the percentage of correct identification of the
interaction term, while DSA algorithm barely identifies
interaction with a very low rate of 4.4%. In terms of vari-
able selection, BMA and LASSO regression are preferred
with lower FPRs, high TPRs, and average model sizes close
to the true one. SPCA tends to select a larger model as
represented by its average model size and high FPR.
Table 2(A) displays simulation results obtained from

four modeling approaches DSA, LASSO, PLSR and SPCA
under simulation Scenario 2. As the number of exposure
variables increases from 4 to 20, the total number of can-
didate predictors (210), including main effects (20) and all
pairwise interactions (190), grows in a quadratic manner.
In this setting, BMA results are not provided because the
total number of explanatory variables exceeds the max-
imum limit 30 set by bma package, and a stepwise proced-
ure is applied automatically to eliminate the redundant
explanatory variables. Among four available approaches,
none of these methods appear to be a desirable choice in
terms of variable selection because an appreciable number
of null predictors are included conservatively, but LASSO
regression is much superior to others. Compared to the
results from simulation Scenario 1, estimated main effects
from LASSO regression are shrunk heavily in order to in-
duce a sparse model and compensate for the instability
caused by multicollinearity. Interestingly, estimation for
interaction effects by LASSO regression appears to be ro-
bust, and its interaction detection rate remains high. DSA
algorithm also selects small models, yet it has a very lim-
ited ability of identifying interactions. SPCA has high de-
tection rates for all non-zero coefficients, but the use of
this method is restricted by its considerably large FPR and
average model size. The MSE of null predictors within
PCA-based methods (i.e. SPCA and PLSR) has been found
much smaller and this may relate to the weak associations
between null predictors and the outcome considered
in the construction of principal components (Additional
file 2: Table S6).
CART is widely used for detecting complex effects

among a large number of explanatory variables, so as an
alternative strategy we decided to apply CART to the
complete set of candidate predictors prior to the five re-
gression methods. The simulation results from this two-
step strategy are given in Table 2(B). In the initial step of
construction of the decision tree with the minimum
cross-validated error, 4 pollutants are correctly identified
to be associated with the outcome over 1000 datasets
with percentages greater than 60% (X1: 86.8%, X2: 70.8%,
X6: 83.7%, and X7: 61.6%), whereas other pollutants less
than 13%. This result suggests that as an exploratory
procedure for variable selection, CART is able to detect
important variables and reduce the number of variables
for regression model. Compared to the simulation re-
sults in Table 2(A), there are substantial improvements



Table 2 Simulation results under Scenario 2: single step versus two-step strategy

Predictor β Measure (A) One-step regression using all
predictors

(B) Two-step strategy employing CART at screening step

DSA LASSO PLSR SPCA BMA1 DSA2 LASSO3 PLSR4 SPCA5

X1 0.50 Estimate (ESE) 0.93 (0.29) 0.08
(0.19)

0.03
(0.01)

0.03
(0.04)

0.32
(0.38)

0.93 (0.29) 0.35
(0.36)

0.11
(0.04)

2.3×10-4 (0.01)

Percent included N/A 28.2% N/A 98.5% 65.2% N/A 68.3% N/A 58.8%

X2 0.50 Estimate (ESE) 0.75 (0.27) 0.07
(0.22)

0.02
(0.01)

0.02
(0.03)

0.25
(0.32)

0.74 (0.25) 0.33
(0.38)

0.09
(0.04)

−2.7×10-4

(0.01)

Percent included N/A 22.6% N/A 94.0% 63.5% N/A 63.8% N/A 58.9%

X6 0.50 Estimate (ESE) 0.88 (0.29) 0.07
(0.19)

0.03
(0.02)

0.02
(0.03)

0.29
(0.36)

0.88 (0.25) 0.36
(0.36)

0.10
(0.05)

−1.2×10-4

(0.01)

Percent included N/A 25.8% N/A 96.2% 63.6% N/A 67.4% N/A 57.9%

X7 0.50 Estimate (ESE) 0.71 (0.26) 0.04
(0.22)

0.02
(0.01)

0.01
(0.02)

0.24
(0.30)

0.67 (0.26) 0.32
(0.34)

0.08
(0.04)

9.1×10-4 (0.01)

Percent included N/A 18.1% N/A 82.4% 65.6% N/A 64.3% N/A 57.8%

X1*X2 0.20 Estimate (ESE) 0.002
(0.03)

0.17
(0.14)

0.07
(0.04)

0.07
(0.07)

0.24
(0.22)

0.006
(0.06)

0.21
(0.18)

0.27
(0.08)

0.28 (0.13)

Percent included 0.3% 79.2% N/A 96.3% 78.4% 1.1% 84.0% N/A 98.6%

X1*X6 0.20 Estimate (ESE) 0.003
(0.05)

0.20
(0.18)

0.06
(0.03)

0.05
(0.06)

0.21
(0.26)

0.006
(0.08)

0.22
(0.22)

0.23
(0.08)

0.19 (0.11)

Percent included 0.3% 77.3% N/A 99.0% 66.7% 0.9% 78.1% N/A 99.8%

X6*X7 0.20 Estimate (ESE) 0.002
(0.04)

0.17
(0.16)

0.06
(0.03)

0.03
(0.05)

0.25
(0.27)

0.004
(0.05)

0.21
(0.21)

0.19
(0.08)

0.15 (0.11)

Percent included 0.3% 74.4% N/A 94.1% 73.3% 0.5% 76.9% N/A 98.6%

Average model
size

20.1 22.8 210 79.3 6.0 4.2 6.7 10.0 8.2

Average estimated effects, empirical standard errors, percentages of correct identification of non-zero coefficients, and average model size corresponding to four
available statistical methods in a cross-sectional study with continuous responses and 20 air pollutants were provide in panel A. Similar results of five statistical
methods after an initial CART variable selection using the two-step modeling strategy were summarized in panel B. Sample size for each replicate was N=250.
The true model size was 7 without accounting for the intercept, and the possible maximum model size was 210. ESE, empirical standard error of the estimate.
Results are based on 1000 replicates.
Estimate of the non-zero predictor is calculated as the mean of the products that estimated regression coefficient of this predictor multiplies the indicator
function that this predictor is correctly identified during each replication. The percentage of the non-zero predictor quantifies the proportion of correct
identification of this predictor over 1000 replicates in each method. 1In BMA, predictors with their posterior probabilities greater than 10% are regarded as
identified. 2In DSA, there is no variable selection for main effects as individual exposures are enforced when their interactions are of interest. Identification of
interaction refers to the inclusion of interaction term in the cross-validated best predictive model. 3Predictors with their estimated LASSO regression coefficients
not equal to zero are considered identified. 4No variable selection has been applied in PLSR because it uses all predictors. 5In SPCA, predictors are identified if
their Wald’s statistics from univariate models are larger than a threshold value.
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on the variable selection for all approaches, as reflected by
the appreciable reduction in average fitted model size and
FPR. BMA analysis becomes feasible after initial screening
by CART, and they perform similarly as in simulation
Scenario 1. The bias of estimates of non-zero coefficients
and the MSE of null predictors in LASSO regression are
significantly reduced as expected, whereas estimates with
their empirical standard errors and interaction detection
rates in DSA algorithm do not change appreciably.

Time-series studies
Table 3 compares performances of regression models
under a time-series design with count data as response
and 4 individual pollutants and their pairwise interac-
tions as candidate variables. The implementation of the
DSA algorithm is not available for time-series data. In
contrast to the simulated cross-sectional studies with
dominance of a few methods, BMA, LASSO and PLSR
all appear to perform quite reasonably in terms of esti-
mation of risk ratio coefficients as presented by their
small biases and MSEs in Additional file 2: Table S6.
Among four approaches, LASSO regression with its 100
percent detection rate for all individual and interaction
terms provides least biased and most efficient estimates.
BMA has a comparable performance as LASSO in terms
of variable selection but produces less efficient estimates
as displayed by larger empirical standard errors and
MSEs. PLSR also provides estimates with small bias but
does not have the feature of variable selection. In spite
of the inconsistent estimates, the high interaction detec-
tion rate in SPCA indicates its potential value under this
simulation scenario.



Table 3 Simulation results for four statistical methods under Scenario 3

Predictor β Measure BMA1 LASSO2 PLSR3 SPCA4

X1 0.30 Estimate (ESE) 0.26 (0.18) 0.27 (0.05) 0.24 (0.07) 0.0013 (0.0070)

Percent included 88.5% 100% N/A 5.6%

X3 0.30 Estimate (ESE) 0.28 (0.15) 0.27 (0.04) 0.23 (0.06) 0.0005 (0.0036)

Percent included 95.8% 100% N/A 3.8%

X1*X3 0.10 Estimate (ESE) 0.11 (0.06) 0.11 (0.01) 0.10 (0.02) 0.19 (0.04)

Percent included 97.7% 100% N/A 100%

Average model size 4.5 5.4 10 1.3

Average estimated effects, empirical standard errors, percentages of correct identification of non-zero coefficients, and average model size corresponding to four
statistical methods in a time-series study with count response and 4 air pollutants. Sample size for each replicate was N=400. The true model size was 3 with
intercept not counted, and the possible maximum model size was 10. ESE, empirical standard error of the estimate. Results are based on 1000 replicates.
Estimate of the non-zero predictor is calculated as the mean of the products that estimated regression coefficient of this predictor multiplies the indicator
function that this predictor is correctly identified during each replication. The percentage of the non-zero predictor quantifies the proportion of correct
identification of this predictor over 1000 replicates in each method. 1In BMA, predictors with their posterior probabilities greater than 10% are regarded as
identified. 2Predictors with their estimated LASSO regression coefficients not equal to zero are considered identified. 3No variable selection has been applied in
PLSR because it uses all predictors. 4In SPCA, predictors are identified if their Wald’s statistics from univariate models are larger than a threshold value.
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A large number of candidate predictors in a time-series
setting can be computationally intensive, so we simulated
daily counts with 10 air pollutants and present results
regarding relative performances of four approaches in
Table 4. With an increased sample size, BMA becomes fa-
vorable in terms of effect estimation and variable selection.
In comparison, LASSO regression yields less parsimonious
models, but provides the smallest MSEs for both null and
associated predictors. The estimated main effects by PCA-
based methods PLSR and SPCA are not very informative,
yet their estimations for interaction terms have small biases
and the interaction detection rate in SPCA is high.
Table 4 Simulation results of four statistical methods under S

Predictor β Measure BMA1

X1 0.20 Estimate (ESE) 0.19 (0.1

Percent included 89.3%

X3 0.20 Estimate (ESE) 0.19 (0.0

Percent included 94.6%

X6 0.20 Estimate (ESE) 0.19 (0.0

Percent included 95.8%

X9 0.20 Estimate (ESE) 0.20 (0.0

Percent included 94.5%

X1*X3 0.10 Estimate (ESE) 0.10 (0.0

Percent included 99.2%

X1*X6 0.10 Estimate (ESE) 0.10 (0.0

Percent included 99.5%

Average model size 13.1

Average estimated effects, empirical standard errors, percentages of correct identifi
statistical approaches in a time-series study with count response and 10 air pollutan
intercept not counted, and the possible maximum model size was 55. ESE, empirica
Estimate of the non-zero predictor is calculated as the mean of the products that e
function that this predictor is correctly identified during each replication. The perce
identification of this predictor over 1000 replicates in each method. 1In BMA, predic
identified. 2Predictors with their estimated LASSO regression coefficients not equal
PLSR because it uses all predictors. 4In SPCA, predictors are identified if their Wald’s
Results for data examples
NHANES data on oxidative stress biomarkers and
environmental contaminant exposures
Table 5 presents the results of model selection from differ-
ent methods for the NHANES data. Predictors and their
estimated effects from the proposed models are shown in
Additional file 2: Table S7. For the outcome bilirubin,
where the associations between bilirubin and multiple ex-
posures are moderate, individual exposures methyl paraben
(EPAR), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP),
perchlorate (P8) and triclosan (TCS) are statistically signifi-
cant in the omnibus regression model. Among all the cross
cenario 4

LASSO2 PLSR3 SPCA4

2) 0.15 (0.04) 0.15 (0.03) 0.006 (0.009)

99.9% N/A 44.1%

9) 0.15 (0.03) 0.12 (0.03) 0.004 (0.006)

99.8% N/A 32.8%

9) 0.14 (0.03) 0.12 (0.04) 0.0006 (0.0014)

99.9% N/A 18.2%

9) 0.14 (0.03) 0.08 (0.03) 0.0001 (0.0006)

99.9% N/A 6.2%

3) 0.11 (0.01) 0.10 (0.01) 0.10 (0.07)

100% N/A 97.1%

3) 0.11 (0.01) 0.10 (0.01) 0.06 (0.05)

100% N/A 87.0%

21.1 55 9.8

cation of non-zero coefficients, and average model size corresponding to four
ts. Sample size for each replicate was N=800. The true model size was 6 with
l standard error of the estimate. Results are based on 1000 replicates.
stimated regression coefficient of this predictor multiplies the indicator
ntage of the non-zero predictor quantifies the proportion of correct
tors with their posterior probabilities greater than 10% are regarded as
to zero are considered identified. 3No variable selection has been applied in
statistics from univariate models are larger than a threshold value.



Table 5 Results of model selection for the NHANES data (2005–2008)

Method Response variable - Bilirubin Response variable - GGT

Main effects Interactions Main effects Interactions

BMA OP, EPAR, P8,
MEOHP, MiBP

OP*EPAR, OP*MEOHP,
P8*MEOHP, MEOHP*MiBP

EPAR, PPAR, MCPP,
MEOHP, MiBP, 2,5-DCP

EPAR*PPAR, EPAR*MCPP, EPAR*MiBP, MEOHP*2,5-DCP,

LASSO OP, TCS, EPAR, P8,
MCPP, MEOHP,

MiBP

OP*EPAR, OP*MEOHP,
TCS*EPAR, TCS*MCPP,
EPAR*MCPP, P8*MCPP

EPAR, PPAR, P8, MCPP,
MEOHP, MiBP, 2,5-DCP,

2,4,5-TCP

EPAR*PPAR, EPAR*P8, EPAR*MCPP, EPAR*MiBP, EPAR*2,5-
DCP, PPAR*2,4,5-TCP, P8*MCPP, MCPP*2,4,5-TCP,

MiBP*2,4,5-TCP

SPCA OP, EPAR, P8,
MCPP, MEOHP,

MiBP

OP*P8, OP*MEOHP, P8*MCPP,
P8*MEOHP, P8*MiBP

EPAR, PPAR, P8, MCPP,
MEOHP, MiBP, 2,5-DCP,

2,4,5-TCP

EPAR*PPAR, MCPP*2,5-DCP, EPAR*MEOHP, EPAR*MiBP,
EPAR*2,5-DCP, P8*MEOHP, MEOHP*2,5-DCP, P8*2,5-DCP,

EPAR*P8

DSA OP, TCS, EPAR, P8,
MCPP, MEOHP,

MiBP

N/A EPAR, PPAR, P8, MCPP,
MEOHP, MiBP, 2,5-DCP,

2,4,5-TCP

N/A

Phthalates: MEHP, mono(2-ethylhexyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MECPP, mono(2-
ethyl-5-carboxypentyl) phthalate; MnBP, mono-n-butyl phthalate; MiBP, mono-isobutyl phthalate; MBzP, mono-benzyl phthalate; MEP, mono-ethyl phthalate;
MCPP, mono(3-carboxypropyl) phthalate. Phenols: BPA, bisphenol-A; TCS, triclosan; BPAR, butyl paraben; EPAR, ethyl paraben; MPAR, methyl paraben; PPAR,
propyl paraben; BP3, benzophenone-3; OP, 4-tert octylphenol. Pesticides: 2,5-DCP, 2,5-dichlorophenol; 2,4-DCP, 2,4-dichlorophenol; OPP, o-phenyl phenol;
2,4,5-TCP, 2,4,5-trichlorophenol; 2,4,6-TCP, 2,4,6-trichlorophenol. Perchlorate and related anions: P8, perchlorate; NO3, nitrate; SCN, thiocyanate.
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products selected by different methods, the interaction of
TCS and EPAR is the only one significant in the omnibus
model, and none of the methods allows a correct identifi-
cation of this effect except for LASSO regression. Likely
due to the strong associations between the outcome
GGT and exposures, all individual exposures identified
by CART are tested to be significant in the omnibus
model. Among significant interactions indicated in this
model, cross products of EPAR*propyl paraben (PPAR),
EPAR*mono (3-carboxypropyl) phthalate (MCPP), and
EPAR*mono-isobutyl phthalate (MiBP) are commonly se-
lected in the four competing statistical methods, while
propyl paraben*2,4,5-trichlorophenol (PPAR*2,4,5-TCP)
and P8*mono(3-carboxypropyl) phthalate (MCPP) are
selected only once.
Examining results from the NHANES data suggest the

usefulness of CART in feature selection. LASSO regres-
sion identifies all the significant main effects and interac-
tions in the omnibus models but yields slightly large
models. BMA and SPCA detect highly significant interac-
tions (p≤0.001) but would miss a few weaker associations.
For instance, among five significant interactions in the
omnibus model for outcome GGT, the most significant
two or three were typically detected by BMA and SPCA.
Similar as in the simulation, DSA performs poorly by fail-
ing to detect any interactions either for bilirubin or GGT.

DAMAT data on asthma morbidly and ambient air
pollutants
Predictors identified from different methods for DAMAT
data are displayed in Table 6, with their estimated effects in
the omnibus model shown in Additional file 2: Table S8.
Consistent with the simulation study and analysis of
NHANES data, LASSO regression chooses the largest
model among all methods. Although the performances of
BMA and SPCA are slightly different, both of them are
able to identify the most significant predictor PM2.5 in the
proposed model but fail to detect the less significant effect
of CO. No interactions were selected in the DAMAT study.
Discussion
This paper provides empirical guidance for selecting
methods readily available in statistical packages to assess
the health effects of environmental exposures in a multi-
pollutant framework under conventional cross-sectional
and time-series studies. A summary chart of all the
methods discussed in this paper with corresponding ref-
erences to the implementation software is presented in
Table 7.
From our empirical investigation, we observe that in gen-

eral, LASSO regression is an appealing approach due to its
robustness in estimation of regression coefficients and its
power in identifying non-zero coefficients associated with
variables of importance under various study designs and
parameter settings. By jointly minimizing the sum of
squared errors and shrinking some estimated regression
coefficients to zero, it seeks a model with accurate esti-
mates in terms of mean squared error properties, especially
when the exposure-response association is weak or
multiple significant pollutants exist, as illustrated in the si-
mulation studies and examples. Another feature of LASSO
regression worth consideration is its computational effi-
ciency. Given a long list of exposure variables, the LAR al-
gorithm enables the implementation of LASSO regression
to be on the same order of the ordinary least squares,
which is orders of magnitude more efficient than other
methods such as DSA [54]. However, when there is a large
pool of correlated candidate variables, LASSO regression
tends to select conservative models by including unrelated
predictors and impose a strong shrinkage towards zero on
estimated regression coefficients.



Table 6 Results of model selection for the DAMAT data
(2004–2006)

Method Main effects Interactions

BMA PM2.5 PM2.5*SO2

LASSO CO, PM2.5, SO2 NO2*PM2.5, PM2.5*SO2

SPCA PM2.5, SO2 PM2.5*SO2, NO2*SO2
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As a competitive approach addressing the issue of
model uncertainty by averaging across models, we find
BMA useful in model selection and parameter estima-
tion when the dataset has a high signal-to-noise ratio or
a sufficiently large sample size, for instance, simulated
datasets in Scenarios 3 and 4. When applied to realistic
dataset in which the coefficient of determination R2 is
small, BMA is likely to produce biased and inefficient es-
timates with both sampling and misspecification errors
considered, as a result, true effects could be masked
[45]. Another difficulty in BMA analysis is the selection
of prior specifications on individual parameters and
model space [57]. In the simulation studies and data
analyses, we chose standard non-informative priors for
all parameters and assumed all models to be equally
likely. However, enumeration of all models causes com-
putational inefficiency when exploring model spaces
with more than 30 variables [63]. Therefore, it is encour-
aged to use informative priors or reduced set of models
to improve the predictive accuracy if background know-
ledge is possible [72]. Furthermore, the idea of averaging
over models using different shrinkage weights, approxi-
mate the corresponding marginal probabilities by BIC
for faster computation are aspects of BMA analysis that
deserve more attention.
PCA-based methods, such as SPCA and PLSR, may

reduce the impact of multicollinearity, but the bias in
Table 7 Glossary of methods with implementation software

Method Reference t

Bayesian model averaging (BMA) Theory

Application

Deletion/Substitution/Addition (DSA) Theory

Application

Least absolute shrinkage and selection operator (LASSO) Theory

Application

Partial least-square regression (PLSR) Theory

Application

Supervised principal component analysis (SPCA) Theory

Application

Classification and regression tree (CART) Theory

Application
their effect estimates is considerable. This is not surprising
because there is no guarantee that maximum-variance pre-
dictor variables always maximize information from the
dependent variable [73]. In our analysis, estimation for in-
teractions was more consistent than for the main effects in
PCA-based methods, and this may relate to the larger vari-
ability of the interaction terms which leads to larger loading
factors in the construction of first few principal compo-
nents and smaller biases in the estimated effects. PLSR in
general has better estimation performance, especially for
main effects, because all candidate predictors are consid-
ered in the model, while in SPCA individual exposures with
non-zero main effects could be eliminated at the pre-screen
because their univariate associations with the outcome are
weak in the presence of non-zero interaction effects. When
the property of feature selection is considered, SPCA ap-
pears to perform well given its ability of capturing non-zero
coefficients in a relatively small model.
It is challenging to detect interaction effects among mul-

tiple pollutants using standard/generalized linear regres-
sion, so it is expected the DSA algorithm proposed for
genomic data could be borrowed to address this problem.
Unfortunately, from our analysis, DSA is not successful in
identifying interactions either in the NHANES example or
in simulated datasets, where the coefficient of determin-
ation R2 is low. It is possible that when applied to datasets
with strong exposure-response associations or sufficiently
large sample sizes, DSA would be helpful in identifying in-
teractions or producing unbiased effect estimates.
From our analysis, LASSO regression is powerful at cap-

turing non-zero coefficients. However, proper significance
testing and inference following LASSO to produce honest
p-values is a non-trivial task. Fitting an ordinary GLM with
selected predictors and using the corresponding tests and
confidence intervals are obviously incorrect and greedy
ype Reference Software

Madigan and Raftery, 1994 [58] bma package in R

Koop and Tole, 2004 [45]

Sinisi and van der Laan, 2004 [32] dsa package in R

Mortimer et al., 2008 [33]

Tibshirani, 1996 [53]; lars package in R

Efron et al., 2004 [54]

Roberts and Martin, 2005 [42]

Hoeskuldsson, 1988 [40] pls package in R

N/A

Bair et al., 2006 [52] N/A

Roberts and Martin, 2006 [38]

Breiman et al., 1984 [48] rpart package in R

Hu et al., 2008 [31]
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solutions. Recent research in this domain has the po-
tential to create breakthroughs in statistical inference
following model selection [74]. To address the asymp-
totic problem in coefficient estimation, the adaptive
LASSO regression has been proposed by introducing
adaptive weights to the L1 penalty term [55]. Suppose

β̂ is a
ffiffiffi
n

p
-consistent estimate to β (e.g., β̂ estimated

by OLS) and w is a weights vector w ¼ 1=jβ̂ γj for
some positive constant γ, the adaptive LASSO esti-
mates are given by:

β̂adaptiveLASSO ¼ arg min
β

ðjjY−Zβjj22 þ λ
XP
p¼1

wpjβpjÞ ð11Þ

It has been shown that the adaptive LASSO can enjoy
the computational efficiency by performing the LARS al-
gorithm on weighted predictors and achieve both
consistency in variable selection and asymptotic nor-
mality in coefficient estimation [55]. To control the
bias in effect estimation when predictors are highly
correlated, an extension of LASSO regression, the
group LASSO, could be used [75,76]. The group
LASSO regression has a penalty as an intermediate
between the L1 and L2 penalty with its estimator de-
fined as:

β̂groupLASSO ¼ arg min
β

ðjjY−Zβjj22 þ λ
XG
g¼1

jjVgβ
gð Þj 2j Þ ð12Þ

In this equation, jjY−Zβjj22 ¼
XN
i¼1

ðY i−β0−
XP
p¼1

βpZipÞ2 ,

λ ≥ 0 is a tuning parameter, Vg ¼ ffiffiffiffiffipgp I is a penalty

matrix with the number of predictors in the g-th group
pg and identity matrix I, and β(g) is the coefficient vector
of the g-th group, g = 1,…,G. It has the attractive prop-
erty of performing variable selection at the group level
and is invariant under groupwise orthogonal transforma-
tions like ridge regression [75,77]. Another alternative
that we have not explored is the application of the elastic
net, a penalized least squares method using a penalty as
the a combination of the LASSO and ridge penalty
[43,78]

β̂elastic−net ¼ arg min
β

jjY−Zβð jj22 þ λ2jjβjj22 þ λ1jjβj 1j Þ ð13Þ

where jjβjj22 ¼
XP
p¼1

β2p , jjβjj1 ¼
XP
p¼1

jβpj, λ1 and λ2 refer to

the tuning parameters for L1 and L2 norm penalty. As a
compromise between ridge and lasso regression, the
elastic net has the characteristic of both selecting vari-
ables like LASSO and shrinking the regression coeffi-
cients of correlated predictors like ridge. Therefore, it
outperforms LASSO regression by encouraging grouping
effects and improving the prediction accuracy when
there are high correlations between predictors [43,78].
Both the group LASSO regression and the elastic net are
popular choices when dealing with grouped variables, a
data structure matches well with the hierarchical nature
of the pollution mixture, and hence deserves further
investigation.
As a nonparametric technique, CART is well suited for

exploring complex relationships under a multipollutant
framework, however, it is limited by the fact that enforcing
monotonicity constrains in building a regression tree is
not possible. Some ideas have been provided in the con-
struction of monotone classification trees. Potharst and
Bioch suggested imposing monotonicity constraints by
adding corner elements of nodes to the existing data
[79]. Feelders proposed to use resampling to generate
many different trees and select the ones that are mono-
tone [80]. Feelders and Pardoel have developed an algo-
rithm that grows a large overfitted tree at an initial step,
prunes the tree towards a sequence of monotone
subtrees, and then selects the one with the best predic-
tive accuracy [81]. Hopefully, some of these algorithms
can be improved and extended to the monotone regres-
sion trees, making the CART more attractive in descri-
bing exposure-response relationships.
In this study, we proposed a two-step strategy for esti-

mating health effects when a large number of candidate
pollutants exist. As an initial step, we use CART to explore
the associations between individual pollutants and the re-
sponse. At the second step, different methods (BMA, DSA,
LASSO, PLSR, and SPCA) are applied to the subset of
important pollutants selected by CART. The advantage
of this two-step strategy comes from the reduction of
some less important dimensions at the first step, and
consequently the signal in the dataset carried forward to
the second step is boosted. However, in real data ana-
lysis, there is possibility that a true effect failed to be
identified at the initial step given a weak exposure-
response association will be missed in the regression
model. Therefore, the performance of this two-step strat-
egy depends heavily on the initial screen by CART.
Compared to univariate associations assessed in the first
step of SPCA, CART uses the information from the set
of all candidate variables as a whole and examines the
complex interactions among exposures and responses,
thus we expect this two-step modeling strategy to be
adaptable in a multipollutant context.
One limitation of our study is that only linear main

effects and linear interaction terms between pollutants
were assumed in our simulation and data analyses,
however, this assumption may not always be true as
evidences of nonlinear relationship, such as threshold
effect, polynomial effect or other non-parametric
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relationship, have been provided in multiple studies
[10,82-84]. Among all the methods we have discussed,
LASSO regression and BMA perform well in the
current simulation studies but may cause bias in esti-
mation if a misspecified interaction model was
adopted in the presence of a truly nonlinear effect;
DSA algorithm exhibits limited ability in detecting in-
teractions in our simulations but may perform better
in higher order polynomial models; CART may help
to identify the threshold values of exposure variables
and capture non-linear and higher order interactions
but does not quantify exposure effect estimates. More ex-
panded simulation studies with complex and high-
dimensional non-linear exposure-response surface are
warranted. We also acknowledge that although we have ex-
amined multiple simulation scenarios in our study, the esti-
mated health effects of exposures in some time‐series
studies are much smaller than the effects defined in our
simulations [4,7,10], thus further assessment of the relative
performances of different methods in time-series analysis
with smaller effect size or larger sample size may be of
added value. Another major issue in exposure epidemi-
ology, namely, exposure measurement error and varying
limits of detection for different exposures was not consid-
ered in our study, it has become well recognized that
measurement errors at different scales may bias the esti-
mation of regression coefficients in a multipolluant model,
for instance, effects of pollutants measured with larger er-
rors can be transferred to other correlated pollutants with
less errors [85]. Researchers have taken steps to address
the challenges of measurement error in time-series ana-
lyses [85-87], and further exploration is needed to develop
methods that take into account the exposure uncertainty.
Selection of lags in exposure-response relationship is an-
other important issue we did not explore. How to incorp-
orate multiple lagged exposures in a high-dimensional
response-exposure surface remains a problem where no
consensus has been reached. Selecting predictors/complex
models under a distributed lag structure remains an issue
of ongoing research [88,89]. In many health effects studies,
where direct measurements of personal exposure to mul-
tiple pollutants are not practical, ambient pollutants con-
centrations are often used as proxies for personal exposure
[6,13]. However, previous studies suggested that exposure
assessment based upon regional monitors does not ad-
equately represent the personal exposure [1,90-92]. Ap-
proaches to estimating personal exposure levels from
ambient measurements via spatial modeling has been
adopted for some air pollutants (e.g. NO2, PM2.5) [9,93,94],
but no attempt towards creating a multipollutant spatially
varying surface has been reported. Use of surrogates as im-
perfect measures of environmental exposures or imput-
ation strategies to circumvent incomplete data issues is not
studied in this paper.
Conclusions
Among the five methods evaluated for regression ana-
lysis, there is no uniform dominance of one method
across all examined simulation scenarios and data exam-
ples. Assuming that exposure distributions are reason-
ably approximated by lognormal distributions and the
strength of correlations among pollutants is moderate,
the performances of competing methods differ according
to the nature of the response variable, the sample size,
the number of exposure variables involved, and the strength
of exposure-response association. In addition, supported
by our results, the two-step modeling strategy proposed in
this paper is potentially applicable under a multipollutant
framework by taking advantage of both the screening
feature of CART and dimension reduction or variable se-
lection property of the subsequent statistical method.
Extension of these methods under complex sampling
schemes and correlated data with accompanying software
packages merits further development.
Characterizing uncertainty in appropriate ways to

proceed with tests of significance and construction of
valid confidence intervals (often with biased estimates)
following the variable selection/shrinkage methods we
have discussed is a very important problem that is not
fully resolved. This is typically done by advanced
bootstrap or resampling strategies that is non-trivial and
computation intensive. Bayesian methods have an advan-
tage of providing measures of uncertainty based on the
exact draws from a posterior distribution, an idea that
translates to complex models. In this paper we have not
discussed fully Bayesian methods. Bayesian approaches
require a complete and thorough independent study.
Modeling of non-linear and complex exposure surfaces

that are truly high dimensional is a daunting problem, re-
cent attempts toward targeted estimation of parameters that
are relevant for policy-making using reduced hierarchical
models are extremely noteworthy in this context [95]. After
building a complex model, one may attempt to extract in-
formation on not just the statistical model parameters, but
parameters that are most informative regarding the scientific
or policy question of interest. For example, risk ratios corre-
sponding to days when certain pollutants exceed national
standards may be more interpretable than the parameters
associated with a natural spline term in a non-linear model
[95]. However, any model trying to capture simultaneous
co-exposure due to multiple pollutants comes with the chal-
lenge of sparsity of sample size in cross-configuration levels
of pollutants, thus borrowing strength from prior studies,
meta-analysis across studies and the possibility of using vari-
able selection shrinkage methods, smoothing techniques as
well as Bayesian hierarchical models offer modern statistical
tools to approach this problem. The ultimate goal will be to
arrive at a low-dimensional, meaningful representation or
summary of a high dimensional modeling problem.
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Abbreviations
PM2.5: Particulate matter less than 2.5 micrometers in diameter;
PM10-2.5: Particulate matter between 2.5 and 10 micrometers in diameter;
CO: Carbon monoxide; SO2: Sulfur dioxide; NO2: Nitrogen dioxide; O3: Ozone;
BMA: Bayesian model averaging; DSA: Deletion/Substitution/Addition;
LASSO: Least absolute shrinkage and selection operator; PLSR: Partial least-
square regression; SPCA: Supervised principal component analysis; PACF:
Partial autocorrelation function; DOW: Day of the week; Temp: Temperature;
RH: Relative humidity; NHANES: National Health and Nutrition Examination
Survey; DAMAT: Detroit Asthma Morbidity, Air Quality and Traffic; FPR: False
positive rate; TPR: True positive rate; MSE: Mean squared error.
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